October 5th, 2021
We have begun exploring stability of perturbations to the adaptive model. We are stuck showing inconsistency in the case where the eigenvalues have positive real component.
To-Do List Snapshot
- Manuscript
Find template- Outline
- Select figures
- Adjoint method: explore different weight kernels.
- Derive interface equations.
- Convergent Solver (low priority)
- Stability Analysis (low priority)
- Wave-train Analysis
- Find periodic solutions.
- Compare frequency and pulse width to non-periodic solutions.
- Reading
- Coombes 2004.
- Folias & Bressloff 2005.
- Faye & Kilpatrick 2018.
Stability Analysis
We begin with the model \begin{align*} \mu u_t &= -u + \int w(x,y) f(u(y,t) - a(y,t)) \ dy \\ \alpha a_t &= -a + \gamma f(u - a) \end{align*} and make the substitution to characteristic coordinates $\xi = x - c t$ $$\begin{align*} -c\mu u_\xi + \mu u_t &= -u + \int w(\xi,y) f(u(y,t) - a(y,t)) \ dy \\ -c\alpha a_\xi + \alpha a_t &= -a + \gamma f(u - a). \end{align*}$$ The traveling pulse solution $U(\xi), A(\xi)$ has been found previously (report 2021-06-03). Assume a small perterbation $$\begin{align*} u &= U(\xi) + \varepsilon \varphi(\xi, t) + \OO(\varepsilon^2) \\ a &= A(\xi) + \varepsilon \psi(\xi, t) + \OO(\varepsilon^2). \end{align*}$$ Substituting into our characteristic coordinate equations gives $$\begin{align*} -c \mu U' - c\mu \varepsilon \varphi_\xi + \mu \varepsilon \varphi_t &= -U - \varepsilon \varphi + \int w(\xi, y) f\big(U-A + \varepsilon(\varphi - \psi) + \OO(\varepsilon^2) \big) \ dy + \OO(\varepsilon^2) \\ -c\alpha A' - c\alpha\varepsilon\psi_\xi + \alpha \varepsilon \psi_t &= -A - \varepsilon \psi + \gamma f\big(U - A + \varepsilon(\varphi - \psi) + \OO(\varepsilon^2)\big) + \OO(\varepsilon^2). \end{align*}$$
Next we linearize must linearize $f$. We intend to take $f(\cdot) = H(\cdot - \theta)$ so we will consider a two-sided linearization: $$ f\big(U-A + \varepsilon(\varphi - \psi) + \OO(\varepsilon^2)\big) = f(U-A) + \OO(\varepsilon^2) + \varepsilon(\varphi - \psi) \underbrace{\begin{cases} \partial_+f(U-A) ,& \varphi > \psi \\ \partial_-f(U-A) ,& \varphi < \psi \end{cases}}_{f'(U-A)} $$ where $\partial_+$ and $\partial_-$ denote the right and left derivatives respectively. We will use the compact notation $f'(U-A)$ which is consistent if the left and right derivatives match.
This gives $$\begin{align*} -c \mu U' - c\mu \varepsilon \varphi_\xi + \mu \varepsilon \varphi_t &= -U - \epsilon \varphi + \int w(\xi, y) f(U-A) \ dy + \varepsilon f'(U-A)\int w(\xi, y)(\varphi - \psi) \ dy + \OO(\varepsilon^2) \\ -c\alpha A' - c\alpha\varepsilon\psi_\xi + \alpha \epsilon \psi_t &= -A - \varepsilon \psi + \gamma f(U - A) + \gamma f'(U-A)\varepsilon(\varphi - \psi) + \OO(\varepsilon^2). \end{align*}$$ Collecting $\OO(1)$ terms $$\begin{align*} -c \mu U' &= -U + \int w(\xi, y) f(U-A) \ dy \\ -c\alpha A' &= -A + \gamma f(U - A) \end{align*}$$ we see that $U$ and $A$ must indeed be the traveling pulse solution. Collecting the $\OO(\varepsilon)$ terms we have $$\begin{align*} - c\mu \varphi_\xi + \mu \varphi_t &= - \varphi + f'(U-A)\int w(\xi, y)(\varphi - \psi) \ dy \\ - c\alpha\psi_\xi + \alpha \psi_t &= - \psi + \gamma f'(U-A)(\varphi - \psi). \end{align*}$$
In the case of $f(\cdot) = H(\cdot - \theta)$ we have $$\begin{align*} f'(U - A) &= \frac{\delta(\xi)}{U'(0) - A'(0)} + \frac{\delta(\xi+\Delta)}{U'(-\Delta) - A'(-\Delta)} \\ &= c_1\delta(\xi) + c_2\delta(\xi+\Delta). \end{align*}$$ where $U'(\cdot) - A'(\cdot)$ is interpreted as a right/left derivative if $\varphi \gtrless \psi$. Thus the constants $c_1$ and $c_2$ depend on the sign of $\varphi - \psi$.
Assume separability: $$ \begin{bmatrix} \varphi(\xi,t) \\ \psi(\xi, t) \end{bmatrix} = g(t)\begin{bmatrix} \varphi_0(\xi) \\ \psi_0(\xi) \end{bmatrix}. $$ Substituting and solving we have \begin{align*} \frac{g'}{g} &= \lambda = \frac{c\mu \varphi_0' - \varphi_0 + f'(U-A)\int w(\xi, y)(\varphi_0 - \psi_0) \ dy }{\mu \varphi_0} \\ \frac{g'}{g} &= \lambda = \frac{c\alpha \psi_0' - \psi_0 + \gamma f'(U-A)(\varphi_0 - \psi_0) }{\alpha \psi_0}. \end{align*} This gives $g(t) = e^{\lambda t}$ and the following system of ODEs $$\begin{align*} \varphi_0' - \frac{1+\lambda \mu}{c\mu} \varphi_0 &= -\frac{1}{c\mu}f'(U-A) \int w(\xi, y) \big(\varphi_0(y) - \psi_0(y) \big) \ dy \\ \psi_0' - \frac{1+\lambda \alpha}{c\alpha} \psi_0 &= -\frac{1}{c\alpha}\gamma f'(U-A) (\varphi_0 - \psi_0 ) \\ \end{align*}$$
Using integrating factors we have $$\begin{align*} \frac{d}{d\xi} \big[ \varphi_0 e^{-\frac{1+\lambda \mu}{c\mu}\xi} \big] &= -e^{-\frac{1+\lambda \mu}{c\mu}\xi}\frac{1}{c\mu}f'(U-A) \int w(\xi, y) \big(\varphi_0(y) - \psi_0(y) \big) \ dy \\ \varphi_0 e^{-\frac{1+\lambda \mu}{c\mu}\xi} &= A + \int -e^{-\frac{1+\lambda \mu}{c\mu}\xi}\frac{1}{c\mu}f'(U-A) \int w(\xi, y) \big(\varphi_0(y) - \psi_0(y) \big) \ dy \ d\xi\\ &= A + \int -e^{-\frac{1+\lambda \mu}{c\mu}\xi}\frac{1}{c\mu}\big(c_1 \delta(\xi) + c_2 \delta(\xi + \Delta)\big) \int w(\xi, y) \big(\varphi_0(y) - \psi_0(y) \big) \ dy \ d\xi\\ &= A - c_1 H(\xi) \underbrace{\frac{1}{c\mu}\int w(0, y) \big(\varphi_0(y) - \psi_0(y) \big) \ dy }_{w_0}\\ &\phantom{===} - c_2 H(\xi+\Delta) e^{-\frac{1+\lambda \mu}{c\mu}\Delta} \underbrace{\frac{1}{c\mu}\int w(\Delta, y) \big(\varphi_0(y) - \psi_0(y) \big) \ dy}_{w_\Delta} \\ \varphi_0(\xi) &= e^{\frac{1+\lambda \mu}{c\mu} \xi} \bigg(A - w_0 c_1 H(\xi) - w_\Delta c_2 e^{-\frac{1+\lambda \mu}{c\mu}\Delta} H(\xi + \Delta) \bigg) \end{align*}$$ where these $w_0$ and $w_\Delta$ depend linearly on $\varphi_0 - \psi_0$.
Similarly, we have $$\begin{align*} \frac{d}{d\xi} \big[ \psi_0 e^{-\frac{1 + \lambda\alpha}{c\alpha} \xi} \big] &= -\frac{1}{c\alpha}e^{-\frac{1 + \lambda\alpha}{c\alpha} \xi} \gamma \big( c_1 \delta(\xi) + c_2 \delta(\xi + \Delta) \big)(\varphi_0 - \psi_0) \\ \psi_0 e^{-\frac{1 + \lambda\alpha}{c\alpha} \xi} &= B - c_1 \underbrace{\frac{\gamma}{c\alpha} \big(\varphi_0(0) - \psi_0(0) \big)}_{v_0}H(\xi) \\ &\phantom{===} -c_2 e^{-\frac{1 + \lambda\alpha}{c\alpha} \Delta} \underbrace{\frac{\gamma}{c\alpha} \big(\varphi_0(\Delta) - \psi_0(\Delta)\big)}_{v_\Delta} H(\xi + \Delta) \\ \psi_0(\xi) &= e^{\frac{1+ \lambda \alpha}{c \alpha} \xi} \big(B - c_1v_0 H(\xi) - c_2 v_\Delta e^{-\frac{1 + \lambda\alpha}{c\alpha} \Delta} H(\xi + \Delta) \big) \end{align*}$$ where these $v_0$ and $v_\Delta$ depend linearly on $\varphi_0 - \psi_0$.
We next consider the values of $\lambda$ for which the initial solution $[\varphi_0, \ \psi_0]^T$ remains bounded. We expect adaptation to be on a slower timescale than excitation and thus restrict ourselves to the more relevant case $\mu < \alpha$. For $\lambda >0 > -\tfrac{1}{\alpha} > -\tfrac{1}{\mu}$ we require $$\begin{align*} 0 &= A - c_1 w_0 - c_2 e^{-\frac{1 + \lambda\mu}{c\mu} \Delta} w_\Delta \\ 0 &= B - c_1 v_0 - c_2 e^{-\frac{1 + \lambda\alpha}{c\alpha} \Delta} v_\Delta. \end{align*}$$ We want to show that this is a contradiction and that $\lambda \le 0$.