$\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand{\sint}{\text{s}\kern-5pt\int}
\newcommand{\powerset}{\mathcal{P}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\SS}{\mathbb{S}}
\newcommand{\MM}{\mathbb{M}}
\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}
\renewcommand{\vec}[1]{\mathbf{#1}}$
References for Thesis
Authors: Sage Shaw
Mon Jun 17 09:20:52 2019
c
This page lists the references for my Thesis. It's mostly just so I can copy them into the presentation slideshow.
[1]
[2]
[3]
[4]
[5]
[6]
References
-
John C. Mairhuber.
On haar's theorem concerning chebychev approximation problems having unique solutions.
Proceedings of the American Mathematical Society, 7(4):609–615, 1956.
URL: http://www.jstor.org/stable/2033359.
-
Jr. Philip C. Curtis.
N-parameter families and best approximation.
Pacific Journal of Mathematics, 9(4):1013–1028, 1959.
URL: https://msp.org/pjm/1959/9-4/pjm-v9-n4-p04-s.pdf.
-
Natasha Flyer and Grady B. Wright.
A radial basis function method for the shallow water equations on a sphere.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2106):1949–1976, 2009.
URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2009.0033, arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2009.0033, doi:10.1098/rspa.2009.0033.
-
Cécile Piret and Jarrett Dunn.
Fast rbf ogr for solving pdes on arbitrary surfaces.
AIP Conference Proceedings, 1776(1):070005, 2016.
URL: https://aip.scitation.org/doi/abs/10.1063/1.4965351, arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.4965351, doi:10.1063/1.4965351.
-
Laurent Demanet.
Painless, highly accurate discretizations of the laplacian on a smooth manifold.
Technical report, Stanford University, 2006.
-
Edward J. Fuselier and Grady B. Wright.
A high-order kernel method for diffusion and reaction-diffusion equations on surfaces.
Journal of Scientific Computing, 56:535–565, 2013.
URL: http://dx.doi.org/10.1007/s10915-013-9688-x, doi:10.1007/s10915-013-9688-x.