$\newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\sint}{\text{s}\kern-5pt\int} \newcommand{\powerset}{\mathcal{P}} \newcommand{\RR}{\mathbb{R}} \newcommand{\NN}{\mathbb{N}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\CC}{\mathbb{C}} \newcommand{\SS}{\mathbb{S}} \newcommand{\MM}{\mathbb{M}} \renewcommand{\Re}{\operatorname{Re}} \renewcommand{\Im}{\operatorname{Im}} \renewcommand{\vec}[1]{\mathbf{#1}}$

References for Thesis
Authors: Sage Shaw
Mon Jun 17 09:20:52 2019


This page lists the references for my Thesis. It's mostly just so I can copy them into the presentation slideshow.

  1. References

[1] [2] [3] [4] [5] [6]

References

  1. John C. Mairhuber. On haar's theorem concerning chebychev approximation problems having unique solutions. Proceedings of the American Mathematical Society, 7(4):609–615, 1956. URL: http://www.jstor.org/stable/2033359.

  2. Jr. Philip C. Curtis. N-parameter families and best approximation. Pacific Journal of Mathematics, 9(4):1013–1028, 1959. URL: https://msp.org/pjm/1959/9-4/pjm-v9-n4-p04-s.pdf.

  3. Natasha Flyer and Grady B. Wright. A radial basis function method for the shallow water equations on a sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2106):1949–1976, 2009. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2009.0033, arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2009.0033, doi:10.1098/rspa.2009.0033.

  4. Cécile Piret and Jarrett Dunn. Fast rbf ogr for solving pdes on arbitrary surfaces. AIP Conference Proceedings, 1776(1):070005, 2016. URL: https://aip.scitation.org/doi/abs/10.1063/1.4965351, arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.4965351, doi:10.1063/1.4965351.

  5. Laurent Demanet. Painless, highly accurate discretizations of the laplacian on a smooth manifold. Technical report, Stanford University, 2006.

  6. Edward J. Fuselier and Grady B. Wright. A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. Journal of Scientific Computing, 56:535–565, 2013. URL: http://dx.doi.org/10.1007/s10915-013-9688-x, doi:10.1007/s10915-013-9688-x.