Sage Shaw - University of Colorado Boulder, USA
May 9th, 2025
Mathematical Models of Neural Encodings
Image courtesy of Heather Cihak.
\begin{align*} \tau_u \frac{\partial}{\partial t}\underbrace{u(t, x)}_{\text{Activity}} &= -u + \underbrace{ \int_\Omega \color{green}{w}(x, y) \quad \color{red}{f}[u(t, y)] \ d y}_{\substack{\text{network}\\\text{stimulation}}} \\ \end{align*}
Rapid firing depletes pre-synaptic resources.
\begin{align*} \tau_u \frac{\partial}{\partial t} u(t, x) &= -u + \int_\Omega w(x, y) \quad \color{blue}{q}(y) \quad f[u(t, y)] \ d y \\ \underbrace{\tau_q}_{\text{slow}} \frac{\partial}{\partial t}\underbrace{q(x,t)}_{\substack{\text{Synaptic}\\\text{Efficacy}}} &= 1 - q - \underbrace{\beta}_{\substack{\text{rate of}\\\text{depletion}}} q \underbrace{f(u)}_{\substack{\text{firing-rate}\\\text{function}}} \end{align*}
Pulse solutions if
$\frac{1}{1+ \beta} < \theta$
substitute with the expansion $$ \begin{align*} u(\xi, t) &= U\big( \xi - \varepsilon \nu(t) \big) + \varepsilon \phi\big(\xi - \varepsilon \nu(t), t\big) + \mathcal{O}(\varepsilon^2) \\ q(\xi, t) &= Q\big( \xi - \varepsilon \nu(t) \big) + \varepsilon \psi\big(\xi - \varepsilon \nu(t), t\big) + \mathcal{O}(\varepsilon^2) \end{align*} $$
Asymptotic threshold
$$ \Delta_c \lt \varepsilon \frac{c\tau_u}{K}$$
$ \Delta_c < \varepsilon \frac{c\tau_u}{K} \color{green}{\frac{T_\text{on}}{T_\text{on} + T_\text{off}}} $
$\partial_t \color{blue}{u}(t, \vecx) = -\color{blue}{u} + \int_{\Omega} \color{green}{w}(\vecx, \vecy) \color{red}{f}[\color{blue}{u}(\vecy)] d \vecy$
Recreation of Coombes et al. (2012)
Curvature affects the trajectory
Slides:
$$\begin{align*} u_t &= \underbrace{3u - u^3}_{\text{excitable}} - \underbrace{v}_{\text{recovery}} + \underbrace{D \Delta_{\mathcal{M}}u}_{\text{diffusion}} \\ \frac{1}{\varepsilon} v_t &= u + \beta + K \underbrace{\int_{\mathcal{M}} H(u) \ d \mu_{\mathcal{M}}}_{\text{neurovascular}} \end{align*}$$
Prof. Zack Kilpatrick
Dr. Tahra Eissa
Sage Shaw
Noah Parks
Will Magrogan
$$\begin{align*} u_t &= \underbrace{u - \frac{1}{3}u^3}_{\text{excitable}} - \underbrace{v}_{\text{recovery}} + \underbrace{D\nabla^2 u}_{\text{Diffusion}} \\ \frac{1}{\varepsilon} v_t &= u + \beta + \underbrace{K\int H(u) d \Omega}_{\substack{\text{neurovascular}\\\text{feedback}}} \end{align*}$$