Sage Shaw - University of Colorado Boulder, USA
June 12th, 2024
Prof. Zack Kilpatrick
University of Colorado Boulder, USA
Prof. Daniele Avitabile
Vrije Universiteit, Amsterdam
$$\begin{align*} u_t &= \underbrace{3u - u^3}_{\text{excitable}} - \underbrace{v}_{\text{recovery}} + \underbrace{D \Delta_{\mathcal{M}}u}_{\text{diffusion}} \\ \frac{1}{\varepsilon} v_t &= u + \beta + K \underbrace{\int_{\mathcal{M}} H(u) \ d \mu_{\mathcal{M}}}_{\text{neurovascular}} \end{align*}$$
$\partial_t \color{blue}{u}(t, \vecx) = -\color{blue}{u} + \int_{\Omega} \color{green}{w}(\vecx, \vecy) \color{red}{f}[\color{blue}{u}(\vecy)] d \vecy$
Recreation of Coombes et al. (2012)
Prof. Zack Kilpatrick
Dr. Tahra Eissa
Sage Shaw
Noah Parks
Will Magrogan
$$\begin{align*} u_t &= \underbrace{u - \frac{1}{3}u^3}_{\text{excitable}} - \underbrace{v}_{\text{recovery}} + \underbrace{D\nabla^2 u}_{\text{Diffusion}} \\ \frac{1}{\varepsilon} v_t &= u + \beta + \underbrace{K\int H(u) d \Omega}_{\substack{\text{neurovascular}\\\text{feedback}}} \end{align*}$$