$\newcommand{vecx}{\vec{x}}$ $\newcommand{vecy}{\vec{y}}$

Radial Basis Function Methods for Neural Field Models

Sage Shaw - University of Colorado Boulder, USA

June 12th, 2024

Collaborators

Prof. Zack Kilpatrick

University of Colorado Boulder, USA

Prof. Daniele Avitabile

Vrije Universiteit, Amsterdam

Outline

  • Motivating Research
    • Cortical Spreading Depression
    • Radial Basis Function Interpolation
  • Neural Field Model
  • Radial Basis Function Quadrature Formulae
  • Numerical Results
  • Next Steps

Motivating Research

Spreading Depression


Zandt, Haken, van Putten, and Dahlem (2015)

Scintillating Scotoma

Reaction Diffusion on surfaces

$$\begin{align*} u_t &= \underbrace{3u - u^3}_{\text{excitable}} - \underbrace{v}_{\text{recovery}} + \underbrace{D \Delta_{\mathcal{M}}u}_{\text{diffusion}} \\ \frac{1}{\varepsilon} v_t &= u + \beta + K \underbrace{\int_{\mathcal{M}} H(u) \ d \mu_{\mathcal{M}}}_{\text{neurovascular}} \end{align*}$$

  • Surface operators: $\Delta_{\mathcal{M}}, \int_{\mathcal{M}} \cdot d \mu_{\mathcal{M}}$
  • Curvature affects speed and stability of waves

Kneer, Scholl, Dahlem (2014)

Coupled neural field and diffusion equation

$$\begin{align*} v_t &= -v + w \ast s_p(v, k) + g_v \\ k_t &= \delta k_{xx} + g_k(s, s_p, a, b) + I \end{align*}$$
  • Neural field model
  • Coupled potassium concentration
  • Models both ignition and propagation of CSD

Baspinar et al. (2023)

A Turing Reaction Diffusion System

$$\begin{align*} u_t &= \delta_u \Delta_{\mathcal{M}} u + \alpha(1-\tau_1 v^2) + v(1-\tau_2 u)\\ v_t &= \delta_v \Delta_{\mathcal{M}} v + \beta(1-\frac{\alpha\tau_1}{\beta} uv) + u(\gamma-\tau_2 v)\\ \end{align*}$$

Radial Basis Funtion Interpolation

  • Function to approximate
  • Sample at scatterd nodes
  • $\phi_j(\vecx) = \Phi(||\vecx - \vecx_j||)$
  • $f(\vecx) \approx s(\vecx) = \sum_j c_j \phi_j(\vecx)$
  • $\text{Error} \to 0$ as $n \to \infty$

RBF Interpolation Properties

  • scattered nodes in any number of dimensions*
  • mesh-free*
  • arbitrary order of accuracy*
  • can be used to find
    • finite difference formulae
    • quadrature formulae

Neural Field Model

Neural Field Model

$\partial_t \color{blue}{u}(t, \vecx) = -\color{blue}{u} + \int_{\Omega} \color{green}{w}(\vecx, \vecy) \color{red}{f}[\color{blue}{u}(\vecy)] d \vecy$

Recreation of Coombes et al. (2012)

  • $\color{blue}{u}(t, \vecx)$ - Activity
  • $\color{green}{w}(\vecx, \vecy)$ - Connectivity kernel
  • $\color{red}{f}[\color{blue}{u}]$ - non-linear firing rate function

Projection Method (Avitabile 2023)

  • True Solution
  • Collocation
  • Projection
  • Error
    • Projection
    • Quadrature
    • Time Integration
  • $\text{Error} \sim \mathcal{O}(n^{-\text{order}/\text{dim}})$

Radial Basis Function Quadrature Formulae

RBF-QF Goal:

  • Given a set of points $\{\vecx_i\} \subset \Omega$
  • find weights $\{w_i\}$
  • such that $\int_\Omega f \approx \sum w_i \ f(\vecx_i)$

RBF-QF Algorithm

  • choose quadrature nodes
  • partition domain
  • choose stencils
  • integrate RBF interpolant
  • sum over stencil and elements

Experimental Results

Gaussian Test Functions

Gaussian Test Functions

Gaussian Test Functions

Quadrature Convergence

Testing manufactured solution

Convergence

Next Steps

  • Adapt to surfaces.
  • Incorporate cortical spreading depression (CSD).
  • Study the effects of realistic cortical curvature on CSD wave generation and propagation.

Our Contributions

  • Neural Field Solver
    • High Order Accurate
    • Flexible Geometry
  • Simplifed Error Analysis
  • Adapt to Surfaces
  • Couple with CSD

Auxiliary Slides

shawsa.github.io

sage.shaw@colorado.edu

The Kilpatrick Lab

Prof. Zack Kilpatrick

Dr. Tahra Eissa

Sage Shaw

Noah Parks

Will Magrogan

Retinotopic Map


Zandt, Haken, van Putten, and Dahlem (2015)

Reaction Diffusion Model

$$\begin{align*} u_t &= \underbrace{u - \frac{1}{3}u^3}_{\text{excitable}} - \underbrace{v}_{\text{recovery}} + \underbrace{D\nabla^2 u}_{\text{Diffusion}} \\ \frac{1}{\varepsilon} v_t &= u + \beta + \underbrace{K\int H(u) d \Omega}_{\substack{\text{neurovascular}\\\text{feedback}}} \end{align*}$$

Markus A. Dahlem (2013)