Sage Shaw - May 30th, 2024
Kilpatrick Lab
$$\begin{align*} u_t &= \underbrace{u - \frac{1}{3}u^3}_{\text{excitable}} - \underbrace{v}_{\text{recovery}} + \underbrace{D\nabla^2 u}_{\text{Diffusion}} \\ \frac{1}{\varepsilon} v_t &= u + \beta + \underbrace{K\int H(u) d \Omega}_{\substack{\text{neurovascular}\\\text{feedback}}} \end{align*}$$
$$\begin{align*} u_t &= 3u - u^3 - v + D \Delta_{\mathcal{M}}u \\ \frac{1}{\varepsilon} v_t &= u + \beta + K \int_{\mathcal{M}} H(u) \ d \mu_{\mathcal{M}} \end{align*}$$
$\partial_t \color{blue}{u}(t, \vecx) = -\color{blue}{u} + \int_{\Omega} \color{green}{w}(\vecx, \vecy) \color{red}{f}[\color{blue}{u}(\vecy)] d \vecy$
Recreation of Coombes et al. (2012)
scalar: | $\partial_t u(t, \vecx) = -u + \int_\Omega w(\vecx, \vecy) f[u(t, \vecy)] \ d\vecy$ |
Banach: | $\dot{U}(t) = -U + W(f[U])$ |
projected: | $\dot{U}_n(t) = -U_n + W_n(f[U_n])$ |
quadrature: | $\dot{\tilde{U}}_n(t) = -\tilde{U}_n + Q(f[\tilde{U}_n])$ |
Error = projection error + quadrature error