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Scientific Question: How do brains encode and predict motion? e Convert to characteristic coordinates: { = = — ct. Then traveling wave e Expand about the traveling wave solution e [ocalized moving stimuli can accelerate traveling pulses to match

solutions u(z,t) = U(€), q(x,t) = Q(§) satisty the linear system their speed. The pulse is said to entrain to the stimulus.

e The firing-rate of populations of neurons is sufficient to explain dy-
namics of large-scale neural networks. Cer d. (€)= —U(e) + / w(l€ — yNO() de e Consider a moving square stimulus with height ¢, width y*, and

. . . . d A (£, 1) speed ¢+ Ac
We can approximate large discrete networks using integro- q

differential equations called neural field models. —CT, qd_gQ (§) =1-Q(&) — BR(§)1A(E) e Substitute into the model, linearize, and extract the O(¢) equation: Iu(€,t) = H(— (§ = Act)) — H(— (E+y* — Act)), Iy =0

in neural field models. e This gives a consistency equation for the speed c (and pulse width). ’ ol ] = L 420+ 10" Entrainment Profile

External stimuli can adjust the position of traveling pulses. Traveling Front Profile ) RHS ’ — thjilriims
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Synaptic depression allows for biologically realistic traveling pulses {T O} s ( & ) Tu(€ + ev) + TU'Y
t

where
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When a pre-synaptic neuron fires, it releases neurotransimiters into !

the synaptic cleft separating it from the post-synaptic neuron.

_ , _ e We have bounded solutions if the right-hand-side is orthogonal to
When neurons fire repeatedly, they will deplete their store of neuro- ' the null-space of the adjoint. Active Region

transmiters faster than they replenish them. | s o

| | | | . . * s £ Stimulus Region
This results in reduced stimulation of the post-synaptic neuron and -4 =30 =200 —10 * Theone-dimensional null-space (v1,vz) € N(£7) satisfies :

£
a reduced firing-rate. We call this synaptic depression. . .
\(j Ig yap P Front Bifurcation —cruvy = v — f(U)Q /R w(ly — &vi(y) dy + B (U)v2 e If the stimulus is too weak or to fast then the wave response will be

M | finite and the wave will not entrain to the stimulus.
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R e We use the ansatz ev(t) = y(t) + Act. The wave can entrain only if the

. . . steady state solution y is stable.
. , e Asymptotic approximation:

Pulse Regime . . e This gives the necessary first order condition
bifurcation o1, Fu€ + ev, ) + (v3, Iy (€ + 21,7)) 5 :
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Stable () Tu<v1,U’>—|—7‘q<vg,Q’> A, < ECTy
Unstable Tu{v1, U’) + 7¢(v2, Q")
—4 Regressive

Image courtesy of Heather Cihak. y<60

Entrainment to a moving square stimulus

Instantaneous Stimul o1+ Entrained

One-Dimensional Neural-Field Model e Front response to global stmulus e7, — £5(6). X Failed to Entrain

Wave ReSpOnse Front response to I(x, t) = €6(t) *7 = Theory
8 .

Tug’“(%t) = :u(x,t2+/ w(lz —yl) q(y, t) fluly, t)] dy +§Iu(33>t2 e These solutions have fixed speeds. — Theory
R ~ ® Simulation

VY

decay N . N o stimulus
non-linear spatial operator e Our visual system is capable of tracking and predicting the location

a . . .
quq(a:, )= 1—q(z,t) — Bale, £ flu(a, t)lJrf]q(x’ f) of objects with a variety of speeds.

N N

replenishment depletion stimulus e Can we augment the model in a biologically realisitc way to ac-
count for this variation in speed?

Stimulus Speed

w(le —yl) = 3¢~

e These waves are marginally stable — when stimulated, they tend to-
f)=H(-—0) = ward a translate of the original traveling wave. Below we see snap- . . . . . . . . .
shots for el, = 0.16(¢ — 20). —0.08 —0.06 —0.04 —0.02 0.00 0.02 0.04 0.06 0.08 01 | | ,
u(z,t) —neural activity (normalized firing-rate) 3 0.00 0.02 0.04 0.06
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AT Stimulus Magnitude
q(x,t) — synaptic efficacy (¢ < 1 represents synaptic depression) Response Example e Pulse response to unit-width square pulse centered at xo.

T — time-scale of neural activity - ely = 550(t)1 (zo—.5,20+.5) e We see that this first order approximation is consistent with simula-

t=0 tions for small e.

O _ . \ /4 \ = . . :
7q — time-scale of synaptic repleneshment | :_ 28 Pulse response to spatially localized stimulus

3 — time-scale (relative to 4) of synaptic depletion verturbed ' Ve References, Funding, and Links

unperturbed _ ® Simulation

v — effective synaptic time-scale (relative to 7) Theory

e Tsodyks, et al. (1998) Neural Computation

w — a weight kernel that encodes the network connectivity ' o Kilpatrick & Bresslotf (2010) Physica D

f —anon-linear firing-rate function ' o Kilpatrick & Ermentrout (2012) Phys. Rev. E

0 — the firing-rate threshold ' This work was supported by NSF DMS-2207700. E
e The amount of translation is called the wave response, denoted v(t).

A(t) (active region) — the subset of domain in which neural activity is | z

sufficient to simtulate other areas of the network 100 -75 -50 -25 00 25 50 | Animations and  supplemental information available at:
Xo https://shawsa.github.io/presentations/20230516

ely,el; — small external stimulii _SIADS_poster.html (or use QR code).




