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Summary
Scientific Question: How do brains encode and predict motion?

• The firing-rate of populations of neurons is sufficient to explain dy-
namics of large-scale neural networks.

• We can approximate large discrete networks using integro-
differential equations called neural field models.

• Synaptic depression allows for biologically realistic traveling pulses
in neural field models.

• External stimuli can adjust the position of traveling pulses.

Background: Synaptic Depression
• When a pre-synaptic neuron fires, it releases neurotransimiters into

the synaptic cleft separating it from the post-synaptic neuron.

• When neurons fire repeatedly, they will deplete their store of neuro-
transmiters faster than they replenish them.

• This results in reduced stimulation of the post-synaptic neuron and
a reduced firing-rate. We call this synaptic depression.

Image courtesy of Heather Cihak.

One-Dimensional Neural-Field Model
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f(·) = H(· − θ) A(t) = {x ∈ R | u(x, t) ≥ θ}

• u(x, t) – neural activity (normalized firing-rate)

• q(x, t) – synaptic efficacy (q < 1 represents synaptic depression)

• τu – time-scale of neural activity

• τq – time-scale of synaptic repleneshment

• β – time-scale (relative to τq) of synaptic depletion

• γ – effective synaptic time-scale (relative to τq)

• w – a weight kernel that encodes the network connectivity

• f – a non-linear firing-rate function

• θ – the firing-rate threshold

• A(t) (active region) – the subset of domain in which neural activity is
sufficient to simtulate other areas of the network

• εIu, εIq – small external stimulii

Traveling Wave Solutions
• Convert to characteristic coordinates: ξ = x− ct. Then traveling wave

solutions u(x, t) = U(ξ), q(x, t) = Q(ξ) satisfy the linear system

−cτu
d

dξ
U(ξ) = −U(ξ) +

∫
A
w(|ξ − y|)Q(y) dξ′

−cτq
d

dξ
Q(ξ) = 1−Q(ξ)− βQ(ξ)IA(ξ)

• This gives a consistency equation for the speed c (and pulse width).
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Wave Response
• These solutions have fixed speeds.

• Our visual system is capable of tracking and predicting the location
of objects with a variety of speeds.

• Can we augment the model in a biologically realisitc way to ac-
count for this variation in speed?

• These waves are marginally stable – when stimulated, they tend to-
ward a translate of the original traveling wave. Below we see snap-
shots for εIu = 0.1δ(t− 20).
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• The amount of translation is called the wave response, denoted ν(t).

Asymptotics
• Expand about the traveling wave solution

u(ξ, t) = U(ξ − εν(t)) + εφ(ξ − εν(t), t) +O(ε2)

q(ξ, t) = Q(ξ − εν(t)) + εψ(ξ − εν(t), t) +O(ε2)

• Substitute into the model, linearize, and extract the O(ε) equation:[
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• We have bounded solutions if the right-hand-side is orthogonal to
the null-space of the adjoint.

• The one-dimensional null-space (v1, v2) ∈ N (L∗) satisfies

−cτuv′1 = v1 − f ′(U)Q

∫
R
w(|y − ξ|)v1(y) dy + βQf ′(U)v2

−cτqv′2 = v2 − f(U)

∫
R
w(|y − ξ|)v1(y) dy + βf(U)v2.

• Asymptotic approximation:

ν′(t) = −〈v1, Iu(ξ + εν, t)〉+ 〈v2, Iq(ξ + εν, τ)〉
τu〈v1, U ′〉+ τq〈v2, Q′〉

.

Instantaneous Stimuli
• Front response to global stimulus εIu = εδ(t).
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• Pulse response to unit-width square pulse centered at x0.

εIu = 1
20δ(t)I(x0−.5,x0+.5)
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Entrainment to Localized Moving Stimuli
• Localized moving stimuli can accelerate traveling pulses to match

their speed. The pulse is said to entrain to the stimulus.

• Consider a moving square stimulus with height ε, width y∗, and
speed c+ ∆c

Iu(ξ, t) = H
(
− (ξ −∆ct

)
)−H

(
− (ξ + y∗ −∆ct

)
), Iq = 0
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• If the stimulus is too weak or to fast then the wave response will be
finite and the wave will not entrain to the stimulus.

• We use the ansatz εν(t) = y(t) + ∆ct. The wave can entrain only if the
steady state solution ȳ is stable.

• This gives the necessary first order condition

∆c <
εcτu

τu〈v1, U ′〉+ τq〈v2, Q′〉
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• We see that this first order approximation is consistent with simula-
tions for small ε.
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Animations and supplemental information available at:
https://shawsa.github.io/presentations/20230516
_SIADS_poster.html (or use QR code).

1


