In The University of Colorado Boulder

Summary

Stimuli shift the position of traveling waves in neural fields with synaptic depression SAGE B. SHAW AND ZACHARY P. KILPATRICK UNIVERSITY OF COLORADO BOULDER

Scientific Question: How do brains encode and predict motion?

- The firing-rate of populations of neurons is sufficient to explain dynamics of large-scale neural networks.
- We can approximate large discrete networks using integrodifferential equations called *neural field models*.
- Synaptic depression allows for biologically realistic traveling pulses | in neural field models.
- External stimuli can adjust the position of traveling pulses.

- When a pre-synaptic neuron fires, it releases neurotransimiters into the synaptic cleft separating it from the post-synaptic neuron.
- When neurons fire repeatedly, they will deplete their store of neurotransmiters faster than they replenish them.
- This results in reduced stimulation of the post-synaptic neuron and a reduced firing-rate. We call this **synaptic depression**.

Background: Synaptic Depression

Image courtesy of Heather Cihak.

One-Dimensional Neural-Field Model

$$
\tau_u \frac{\partial}{\partial t} u(x, t) = -u(x, t) + \underbrace{\int_{\mathbb{R}} w(|x - y|) q(y, t) f[u(y, t)] dy}_{\text{non-linear spatial operator}} + \underbrace{\varepsilon I_u(x, t)}_{\text{stimulus}}
$$
\n
$$
\tau_q \frac{\partial}{\partial t} q(x, t) = \underbrace{1 - q(x, t)}_{\text{rephenishment}} - \underbrace{\beta q(x, t) f[u(x, t)]}_{\text{depletion}} + \underbrace{\varepsilon I_q(x, t)}_{\text{stimulus}}
$$
\n
$$
w(|x - y|) = \frac{1}{2} e^{-|x - y|} \qquad \gamma = \frac{1}{1 + \beta}
$$
\n
$$
f(\cdot) = H(\cdot - \theta) \qquad A(t) = \{x \in \mathbb{R} \mid u(x, t) \ge \theta\}
$$

\n- $$
u(x, t)
$$
 – neural activity (normalized firing-rate)
\n

- $q(x, t)$ synaptic efficacy ($q < 1$ represents synaptic depression)
- τ_u time-scale of neural activity
- τ_q time-scale of synaptic repleneshment
- β time-scale (relative to τ_q) of synaptic depletion
- γ effective synaptic time-scale (relative to τ_q)
- $w a$ weight kernel that encodes the network connectivity
- f a non-linear firing-rate function
- θ the firing-rate threshold
- $A(t)$ (active region) the subset of domain in which neural activity is sufficient to simtulate other areas of the network
- εI_u , εI_q small external stimulii

Animations and supplemental information available at: https://shawsa.github.io/presentations/20230516 _SIADS_poster.html (or use QR code).

$$
u(\xi, t) = U(\xi - \varepsilon \nu(t)) + \varepsilon \phi(\xi - \varepsilon \nu(t), t) + \mathcal{O}(\varepsilon^2)
$$

$$
q(\xi, t) = Q(\xi - \varepsilon \nu(t)) + \varepsilon \psi(\xi - \varepsilon \nu(t), t) + \mathcal{O}(\varepsilon^2)
$$

$$
\begin{bmatrix} \tau_u & 0 \\ 0 & \tau_q \end{bmatrix} \begin{bmatrix} \phi \\ \psi \end{bmatrix}_t + \mathcal{L} \left(\begin{bmatrix} \phi \\ \psi \end{bmatrix} \right) = \underbrace{\begin{bmatrix} I_u(\xi + \varepsilon \nu) + \tau_u U' \nu' \\ I_q(\xi + \varepsilon \nu) + \tau_q Q' \nu' \end{bmatrix}}_{\text{RHS}}
$$

$$
\begin{bmatrix} \phi \\ \phi \end{bmatrix} = \begin{bmatrix} \phi \\ \psi \end{bmatrix} - c \begin{bmatrix} \tau_u & 0 \\ 0 & \tau_q \end{bmatrix} \begin{bmatrix} \phi \\ \psi \end{bmatrix}_{\xi} + \begin{bmatrix} -wQf'(U) * \cdot & -wf(U) * \cdot \\ \beta Qf'(U) & \beta f(U) \end{bmatrix} \begin{bmatrix} \phi \\ \psi \end{bmatrix}
$$

$$
-c\tau_u v_1' = v_1 - f'(U)Q \int_{\mathbb{R}} w(|y-\xi|)v_1(y) dy + \beta Qf'(U)v_2
$$

$$
-c\tau_q v_2' = v_2 - f(U) \int_{\mathbb{R}} w(|y-\xi|)v_1(y) dy + \beta f(U)v_2.
$$

$$
\nu'(t) = -\frac{\langle v_1, I_u(\xi + \varepsilon \nu, t) \rangle + \langle v_2, I_q(\xi + \varepsilon \nu, \tau) \rangle}{\tau_u \langle v_1, U' \rangle + \tau_q \langle v_2, Q' \rangle}
$$

$$
\varepsilon I_u = \frac{1}{20} \delta(t) I_{(x_0-.5,x_0+.5)}
$$

-
- speed $c + \Delta_c$

Entrainment to Localized Moving Stimuli

• Localized moving stimuli can accelerate traveling pulses to match their speed. The pulse is said to **entrain** to the stimulus.

• Consider a moving square stimulus with height ε , width y^* , and

 $I_u(\xi, t) = H(- (\xi - \Delta_c t)) - H(- (\xi + y^* - \Delta_c t)), \quad I_q = 0$

-
- We use the ansatz $\varepsilon \nu(t) = y(t) + \Delta_c t$. The wave can entrain only if the steady state solution \bar{y} is stable.
-

• If the stimulus is too weak or to fast then the wave response will be  finite and the wave will not entrain to the stimulus.

• This gives the necessary first order condition

$$
\Delta_c < \frac{\varepsilon c \tau_u}{\tau_u \langle v_1, U' \rangle + \tau_q \langle v_2, Q' \rangle}
$$

Entrainment to a moving square stimulus

• We see that this first order approximation is consistent with simula-

References, Funding, and Links

• Tsodyks, et al. (1998) Neural Computation • Kilpatrick & Bressloff (2010) Physica D

- Kilpatrick & Ermentrout (2012) Phys. Rev. E
- This work was supported by NSF DMS-2207700.

