Control of traveling waves in adaptive neural fields

Comprehensive Exam

Sage Shaw - April 4th, 2023

Outline

  • Neural field model
  • Traveling wave solutions
  • The wave response
  • Entrainment
  • Future work

Neural Field Model

Biological Neural Networks

Image courtesy of Heather Cihak.

Retinotopic Map

  • Primary visual area (V1)
  • Sensory areas have spatially organized topologies

Neural Field Models

  • Organize neural populations on a line
  • Connectivity is determined by distance
  • Extend to a continuum limit

1D Neural Fields

  • Progressive fronts
  • Regressive fronts
  • Pulses

Synaptic Depression

Rapid firing depletes pre-synaptic resources.

Model

\begin{align*} \tau_u \frac{\partial}{\partial t}\underbrace{u(x,t)}_{\text{Activity}} &= -u + \underbrace{\overbrace{w}^{\substack{\text{network}\\\text{connectivity}\\\text{kernel}}} \ast \big( q f[u] \big)}_{\substack{\text{network}\\\text{stimulation}}} \\ \tau_q \frac{\partial}{\partial t}\underbrace{q(x,t)}_{\substack{\text{Synaptic}\\\text{Efficacy}}} &= 1 - q - \underbrace{\beta}_{\substack{\text{rate of}\\\text{depletion}}} q \underbrace{f(u)}_{\substack{\text{firing-rate}\\\text{function}}} \end{align*}

Model

  • $f[u] = H(u - \theta)$ - All or nothing firing-rate function.
  • $w(|x-y|) = \frac{1}{2}e^{-|x-y|}$ - network connectivity kernel
  • $\frac{1}{1+\beta} = \gamma \in (0, 1]$ - Relative timescale of synaptic depletion.

Model

Traveling wave solutions

Front solutions

  • $\xi = x - ct$
  • Active region: $(-\infty, 0)$
  • Restrict to $c > 0$
  • Linearizes equations
  • Decouples $q$ from $u$
  • $U(-\infty) = \gamma > \theta$

$$ \theta = \frac{\gamma + c\tau_q\gamma}{2(1+c\tau_q\gamma)(1+c\tau_u)} $$

Front Bifurcations

Front Bifurcations

Pulse solutions

  • $\xi = x - ct$
  • Active region: $(-\Delta, 0)$
  • Linearizes equations
  • Decouples $q$ from $u$
 

Two consistency equations for $c$ and $\Delta$.

Pulse Speed and Width

Wave response

Correcting Position

  • Position encoded as a pulse
  • Must be corrected

Spatially homogeneous perturbation

Asymptotic Approximation

add stimulus terms $$ \begin{align*} \tau_u u_t &= -u + w * (q f[u]) + \varepsilon I_u(x, t) \label{eqn:forced_u} \\ \tau_q q_t &= 1 - q - \beta q f[u] + \varepsilon I_q(x, t) \label{eqn:forced_q} \end{align*} $$

substitute with the expansion $$ \begin{align*} u(\xi, t) &= U\big( \xi - \varepsilon \nu(t) \big) + \varepsilon \phi + \mathcal{O}(\varepsilon^2) \\ q(\xi, t) &= Q\big( \xi - \varepsilon \nu(t) \big) + \varepsilon \psi + \mathcal{O}(\varepsilon^2) \end{align*} $$

Collect the $\mathcal{O}(\varepsilon)$ terms

$$\begin{align*} \underbrace{\begin{bmatrix}\tau_u & 0 \\ 0 & \tau_q\end{bmatrix}}_{T} \begin{bmatrix}\phi \\ \psi \end{bmatrix}_t + \mathcal{L}\begin{bmatrix}\phi \\ \psi \end{bmatrix} &= \begin{bmatrix} I_u + \tau_u U' \nu' \\ I_q + \tau_q Q' \nu ' \end{bmatrix} \end{align*}$$ $$ \mathcal{L}(\vec{v}) = \vec{v} - cT \vec{v} + \begin{bmatrix} -w Q f'(U) * \cdot & -w f(U) * \cdot \\ \beta Q f'(U) & \beta f(U) \end{bmatrix} \vec{v} $$

Bounded solutions exist if the inhomogeneity is orthogonal to $\mathcal{N}\{\mathcal{L^*}\}$. For $(v_1, v_2) \in \mathcal{N}\{\mathcal{L^*}\}$ $$\begin{align*} -c \tau_u v_1' &= v_1 - Qf'(U) \int w(y,\xi) v_1(y) \ dy + \beta Qf'(U) v_2 \\ -c \tau_q v_2' &= v_2 - f(U) \int w(y, \xi) v_1(y) \ dy + \beta f(U) v_2. \end{align*}$$

Wave response function

$$ \nu(t) = - \frac{\int_\mathbb{R} v_1 \int_0^t I_u(\xi, \tau) \ d\tau + v_2 \int_0^t I_q(\xi, \tau) \ d\tau \ d\xi}{\int_\mathbb{R} \tau_u U' v_1 + \tau_q Q' v_2 \ d\xi} $$

Spatially Homogeneous perturbation

$$ \varepsilon I_u = \varepsilon \delta(t - 1) $$

Spatially localized perturbation

Spatially localized perturbation

Spatially localized perturbation

Spatially localized perturbation

Entrainment

Tracking a moving stimulus

Tracking a moving stimulus

Tracking a moving stimulus

Tracking a flashing stimulus

Tracking a flashing stimulus

Tracking a flashing stimulus

Tracking apparent motion

Tracking apparent motion

Tracking apparent motion

  • Preliminary results
  • Similar to the moving, flashing stimulus.

Future work

Spreading Depression


Zandt, Haken, van Putten, and Markus (2015)

Retinotopic Map


Zandt, Haken, van Putten, and Markus (2015)

Scintillating Scotoma

Reaction Diffusion Model

$$\begin{align*} u_t &= \underbrace{u - \frac{1}{3}u^3}_{\text{excitable}} - \underbrace{v}_{\text{recovery}} + \underbrace{D\nabla^2 u}_{\text{Diffusion}} \\ \frac{1}{\varepsilon} v_t &= u + \beta + \underbrace{K\int H(u) d \Omega}_{\substack{\text{neurovascular}\\\text{feedback}}} \end{align*}$$

Markus A. Dahlem (2013)

Coupled neural field and diffusion equation

$$\begin{align*} v_t &= -v + w \ast s_p(v, k) + g_v \\ k_t &= \delta k_{xx} + g_k(s, s_p, a, b) + I \end{align*}$$
  • Neural field model
  • Coupled potassium concentration
  • Models both ignition and propagation of CSD

Reaction Diffusion on surfaces

$$\begin{align*} u_t &= 3u - u^3 - v + D \Delta_{\mathcal{M}}u \\ \frac{1}{\varepsilon} v_t &= u + \beta + K \int_{\mathcal{M}} H(u) \ d \mu_{\mathcal{M}} \end{align*}$$

  • Surface operators: $\Delta_{\mathcal{M}}, \int_{\mathcal{M}} \cdot d \mu_{\mathcal{M}}$
  • Affects speed and stability of waves

Kneer, Scholl, Dahlem (2014)

A Turing Reaction Diffusion System using RBFs

$$\begin{align*} u_t &= \delta_u \Delta_{\mathcal{M}} u + \alpha(1-\tau_1 v^2) + v(1-\tau_2 u)\\ v_t &= \delta_v \Delta_{\mathcal{M}} v + \beta(1-\frac{\alpha\tau_1}{\beta} uv) + u(\gamma-\tau_2 v)\\ \end{align*}$$

Thank you

Auxiliary Slides

A Turing Reaction Diffusion System using RBFs

Numerical Continuation

2D Neural Fields

Huang et al. (2010)

Laing (2005)